
CAN in Automation (CiA)
International Users and Manufacturers Group e.V.

CAN Application Layer for Industrial Applications
CiA/DS202-1

February 1996

CMS Service Specification

February 1996
CMS Service Specification

- DS202-1 p. 2 -

1. SCOPE

This document contains the service specification of the CAN based Message
Specification (CMS). CMS is part of the CAN Application Layer. This document is part of a
set of documents that standardize the CAN Application Layer for Industrial Applications.

2. REFERENCES

/1/: CiA/DS201, CAN Reference Model

/2/: CiA/DS202-2, CMS Protocol Specification

/3/: CiA/DS202-3, CMS Data Types and Encoding Rules

/4/: CiA/DS207, Application Layer Naming Conventions

3. GENERAL DESCRIPTION

3.1 CMS Perspective

CMS is one of the application layer service entities of the CAN Reference Model, see /1/.

3.2 CMS Objects and Services

CMS is a language to specify what COB's a module uses and how they are formatted.
CMS can describe all CAN layer 2 features. This means also that existing applications can be
described in CMS. Furthermore CMS offers the application a possibility to model its behaviour
in the form of objects and remote services on these objects. This allows other applications to
cooperate with it by executing these services that CMS supports on these objects. The different
service types and primitives are defined in /1/. The notation that is used to describe the CMS
Services is also explained in /1/.

3.3 CMS Clients and Servers

An example is given in fig. 1 where CMS is used to model the control of a light switch.
The server of the switch "physically" interacts with the switch to put on the light. The server
"translates" this behaviour into the CMS language e.g a CMS variable with access

February 1996
CMS Service Specification

- DS202-1 p. 3 -

type 'Write_Only' and data type BOOLEAN. The client "logically" interacts with the switch by
using the remote CMS 'Write Variable' service.

CMS allows for an object to have one or more servers and zero or more clients,
depending on what the object models.

CMS

Fig. 1: A CMS Model for a light switch

3.4 CMS Data Types

In order to give a server sufficient information on what he has to do, the client may
have to exchange data with the server, e.g the required and current position of the valve. CMS
models this by the concept of data types. CMS defines a number of basic types such as
INTEGER(5). It is also possible to construct a compound type by collecting basic types in an
ARRAY or a STRUCTURE. CMS defines also a number of extended data types.

CMS defines a transfer syntax that describes how values of a particular data type have
to be transmitted over the CAN network. The data types and transfer syntax is described in the
CMS Data Types and Encoding Rules, see /3/.

3.5 CMS Object Priorities

The priority of a CMS object indicates its importance relative to other CMS objects and
is used as an arbitration value by the Medium Access Control of CAN. CMS defines eight
priorities in the range [0, 7]. 0 is the highest, 7 the lowest priority.

February 1996
CMS Service Specification

- DS202-1 p. 4 -

Priorities can be assigned by the application or the Distributor Service Element (see
/1/). In case the Distributor Service Element assigns a priority, the Network Management
Service Element (see /1/) controls when the assignment takes places.

February 1996
CMS Service Specification

- DS202-1 p. 5 -

3.6 CMS Object Inhibit Times

To guarantee that no starvation on the network occurs for CMS objects with low
priorities, CMS objects can be assigned an inhibit time. The inhibit-time of a CMS object
defines the minimum time that has to elapse between two consecutive invocations of a CMS
remote service for that CMS object.

Inhibit-times can be assigned by the application or the Distributor Service Element (see
/1/). In case the Distributor Service Element assigns an inhibit-time, the Network Management
Service Element (see /1/) controls when the assignment takes places.

3.7 CMS Service Descriptions

The CMS services are described in a tabular form that contains the parameters of each
service primitive that is defined for that service. The primitives that are defined for a particular
service determine the service type (e.g unconfirmed, confirmed, etc.). How to interprete the
tabular form and what service types exist is defined in /1/. In the service descriptions, [a, b]
denotes the range of integers from a to b with a and b included. If a > b, the range is empty.

All services assume that no failures occur in the Data Link and Physical Layer of the
CAN network. These failures are resolved by the Network Management Service Element, see
/1/.

CMS executes a protocol to implement the services on a CMS object. All protocols are
defined in /2/. Each protocol needs one or two COB's to be able to transmit and receive data
over the CAN network. This document specifies for each CMS service the used COB's and
their attributes:

• the COB-Class. There are 8 COB-Classes. A COB-Class relates the number of
(remote) receivers and (remote) transmitters for that COB. The Distributor

COB Class #receivers #transmitters

0
1
2
3
4
5
6
7

0 .. 1
 1
 > 1
 > 0
0 .. 1
 1
 > 1
 > 0

0 .. 1
0 .. 1
0 .. 1
0 .. 1
 1
 1
 1
 1

February 1996
CMS Service Specification

- DS202-1 p. 6 -

Service Element checks for each COB whether the total number of (remote)
transmitters and (remote) receivers matches the COB-Class.

• the COB-type for both the server- and client:
rx = receives a COB
tx = transmits a COB
RTR-rx = receives the data of a remote COB
RTR-tx = transmits the data of a remote COB

• the COB-length. If '*' is specified it means that the data length is determined by
the CMS Encoding Rules (see /3/), the data- and error type attribute of the CMS
object, and the CMS protocol that this COB is used for (see /2/). If a number is
specified it means that the COB has a fixed length.

February 1996
CMS Service Specification

- DS202-1 p. 7 -

4. VARIABLES

4.1 Attributes

The following attributes are defined for variables:

- name: see /4/
- user_type: one of the values {Client, Server}
- priority: a value in the range [0, 7]
- inhibit-time: n*100 usec, n >> 0
- data_type: see /3/
- error_type: see /3/
- class: one of the values {Basic, Multiplexed}
- access_type: one of the values {Read_Only, Write_Only, Read_Write}

A variable whose class is 'Basic' is called a basic variable. A variable whose class is
'Multiplexed' is called a multiplexed variable. A multiplexed variable is multiplexed with other
multiplexed variables into a variable set.

The following attributes are only defined for multiplexed variables:

- var_set_name: see /4/
- mutiplexor: a value in the range [0, 127]

The multiplexor is a natural number that uniquely identifies the variable within the
variable set. Multiplexed variables inherit the values of the user_type, access_type, priority, and
inhibit-time attributes from the corresponding attributes of the variable set. Hence, all
multiplexed variables within one variable set have the same value for these attributes. The
following attributes are defined for variable sets:

- name: see /4/
- user_type: one of the values {Client, Server}
- priority: a value in the range [0, 7]
- inhibit-time: n*100 usec, n >> 0
- access_type: one of the values {Read_Only, Write_Only, Read_Write}

4.2 Usage

The access type of a variable is seen from the point of view of the client. Variables with
access_type 'Read_Only' can be used by a client only to collect data. For basic variables the
collected data will be the data that was set by the server in the last 'update variable'

February 1996
CMS Service Specification

- DS202-1 p. 8 -

service it executed. Data from previous updates is lost. For multiplexed variables the server has
to supply the data when requested by the client.

Variables with access_type 'Write_Only' can be used by a client to request one or more
servers to execute a command. The client will not know the result of the command execution.

Variables with access_type 'Read_Write' can be used by a client to collect the 'current
data' from the server (read service) or to request a server to execute a command and be
informed about the result of the command execution (write service).

Variable sets can be used to "multiplex" several variables. All these multiplexed
variables will then be mapped onto the COB's that are used by that variable set. This reduces
the number of COB's. Within a variable set the variables are identified by a unique
"multiplexor".

4.3 Local Services

Define Variable

This service creates a variable with the requested attributes. Var_set_name must have
been defined as a variable set. The attributes must not cause the data length of the used COB's
to overflow the maximum.

Parameter Request

Argument
 var_name
 data_type
 error_type
 class
 basic_var
 user_type
 acess_type
 priority
 inhibit-time
 mux_var
 var_set_name
 multiplexor

Mandatory
 mandatory
 mandatory
 optional
 mandatory
 selection
 mandatory
 mandatory
 optional
 optional
 selection
 mandatory
 mandatory

February 1996
CMS Service Specification

- DS202-1 p. 9 -

• NOTE: The cooperating applications are responsible for using consistent
attributes for the client and the server of the variable.

Define Variable Set

This service creates a variable set with the requested attributes.

Parameter Request

Argument
 var_set_name
 user_type
 access_type
 priority
 inhibit-time

Mandatory
 mandatory
 mandatory
 mandatory
 optional
 optional

• NOTE: The cooperating applications are responsible for using consistent
attributes for the client and the server of the variable set.

Update Variable

Through this service the server of var_name updates the value of var_name. Previously
updated values for var_name are lost. Var_name must be a basic variable with access_type
'Read_Only' and user_type 'Server' and value must match the data_type attribute of var_name.

Parameter Request

Argument
 var_name
 value

Mandatory
 mandatory
 mandatory

February 1996
CMS Service Specification

- DS202-1 p. 10 -

4.4 Remote Services

Write Variable

Through this service the client of var_name supplies a value to the server(s) of
var_name. Var_name must be a variable with access_type 'Write_Only' or 'Read_Write'. The
supplied value must match the data_type attribute of var_name.

Parameter Request / Indication Response / Confirm

Argument
 var_name
 value

Remote Result
 success
 failure
 reason

Mandatory
 mandatory
 mandatory

Mandatory
 selection
 selection
 optional

• Write_Only variables: The service is unconfirmed. The supplied value is
indicated to the server. There are no Response/Confirm primitives. There can be
at most one client. There must be at least one server.

• Read_Write variables: The service is confirmed. The supplied value is indicated
to the server. The Remote Result parameter will indicate the success or failure of
the request. In case of a failure, optionally a value of the error_type attribute of
var_name confirms the reason. There can be at most one client. There must be
exactly one server.

Read Variable

Through this service the client of var_name requests the server of var_name to supply
its value. Var_name must be a variable with access_type 'Read_Only' or 'Read_Write'. The
supplied value must match the data_type attribute of var_name.

• Read_Only basic variables: The service is confirmed. The Remote Result
parameter will confirm the requested value as set by the last Update Variable
service. There can be zero or more clients. There must be exactly one server.

February 1996
CMS Service Specification

- DS202-1 p. 11 -

Parameter Request / Indication Response / Confirm

Argument
 var_name

Remote Result
 value

Mandatory
 mandatory

Mandatory
 mandatory

• Read_Write variables, Read_Only multiplexed variables: The service is
confirmed. The Remote Result parameter will indicate the success or failure of
the request. In case of success, the requested value is confirmed. In case of a
failure, optionally a value of the error_type attribute of var_name confirms the
reason. There can be at most one client. There must be exactly one server.

Parameter Request / Indication Response / Confirm

Argument
 var_name

Remote Result
 success
 value
 failure
 reason

Mandatory
 mandatory

Mandatory
 selection
 mandatory
 selection
 optional

4.5 Used COB's

• Read_Only Basic Variable

Client
COB-Type

Server
COB-Type

COB-Class COB-Length

RTR-rx RTR-tx 7 *

February 1996
CMS Service Specification

- DS202-1 p. 12 -

• Read_Only Multiplexed Variable

Client
COB-Type

Server
COB-Type

COB-Class COB-Length

tx
rx

rx
tx

1
4

1
*

• Write_Only Variables

Client
COB-Type

Server
COB-Type

COB-Class COB-Length

tx rx 2 *

• Access_Type = Read_Write:

Client
COB-Type

Server
COB-Type

COB-Class COB-Length

tx
rx

rx
tx

1
4

*
*

February 1996
CMS Service Specification

- DS202-1 p. 13 -

5. DOMAINS

5.1 Attributes

- name: see /4/
- user_type: one of the values {Client, Server}
- class: one of the values {Basic, Multiplexed}
- priority: a value in the range [0, 7]
- inhibit-time: n*100 usec, n >> 0

For a domain there can be at most one client and there must be exactly one server. A
domain whose class is 'Basic' is called a basic domain. A domain whose class is 'Multiplexed' is
called a multiplexed domain. The following attribute is only defined for multiplexed domains:

- mux_data_type: see section 4.2

5.2 Usage

Basic domains can be used to transfer an arbitrary large block of data from a client to a
server and vv. The contents of a data block is application specific and does not fall within the
scope of the CiA Standard on the CAN Application Layer for Industrial Applications.

Multiplexed domains can be used to transfer multiple data sets (each containing an
arbitrary large block of data) from a client to a server and vv. The client can control via a
multiplexor which data set is to be transferred. This multiplexor is a value of a CMS Data
Type. The CMS Data Type of the multiplexor and the contents of the data sets are application
specific and do not fall within the scope of the CiA Standard on the CAN Application Layer
for Industrial Applications.

A domain is transferred as a sequence of segments. Prior to transferring the segments
there is an initialization phase where client and server can prepare themselves for transferring
the segments. For multiplexed domains, it is also possible to transfer a data set during the
initialization phase. This mechanism is called an expedited transfer.

It is always the client that takes the initiative for a transfer. Both the client and the
server can take the initiative to abort the transfer of a domain. By using the segmented
services, the application will be responsible for the segmentation of the domain. By using the
non-segmented services, CMS will be responsible for the segmentation.

February 1996
CMS Service Specification

- DS202-1 p. 14 -

5.3 Local Services

Define Domain

Parameter Request

Argument
 dom_name
 user_name
 priority
 inhibit-time
 class
 basic_dom
 mux_dom
 mux_data_type

Mandatory
 mandatory
 mandatory
 optional
 optional
 mandatory
 selection
 selection
 mandatory

This service creates a domain with the requested attributes.

• NOTE: The cooperating applications are responsible for using consistent
attributes for the client and the server of the domain.

5.4 Remote Services (non-segmented)

When using these services, CMS will be responsible for transferring the domain as a
sequence of segments.

Domain Download

Through this service the client of dom_name downloads data to the server of
dom_name. The data and optionally its size are indicated to the server. For multiplexed
domains the multiplexor of the data set that has been downloaded is indicated to the server.
The value of multiplexor must match the mux_data_type attribute of dom_name.

The service is confirmed. The Remote Result parameter will indicate the success or
failure of the request. In case of a failure, optionally the reason is confirmed.

February 1996
CMS Service Specification

- DS202-1 p. 15 -

Parameter Request / Indication Response / Confirm

Argument
 dom_name
 data
 size
 basic_dom
 mux_dom
 multiplexor

Remote Result
 success
 failure
 reason

Mandatory
 mandatory
 mandatory
 optional
 selection
 selection
 mandatory

Mandatory
 selection
 selection
 optional

Domain Upload

Through this service the client of dom_name uploads data from the server of
dom_name. For multiplexed domains the multiplexor of the data set that has to be uploaded is
indicated to the server. The value of multiplexor must match the mux_data_type attribute of
dom_name.

Parameter Request / Indication Response / Confirm

Argument
 dom_name
 basic_dom
 mux_dom
 multiplexor

Remote Result
 success
 data
 size
 failure
 reason

Mandatory
 mandatory
 selection
 selection
 mandatory

Mandatory
 selection
 mandatory
 optional
 selection
 optional

The service is confirmed. The Remote Result parameter will indicate the success or
failure of the request. In case of a failure, optionally the reason is confirmed. In case of
success, the data and optionally its size are confirmed.

February 1996
CMS Service Specification

- DS202-1 p. 16 -

5.5 Remote Services (segmented)

When using these services, the application will be responsible for transferring the
domain as a sequence of segments.

Initiate Domain Download

Through this service the client of dom_name requests the server of dom_name to
prepare for downloading data to the server. Optionally the size of the data to be downloaded is
indicated to the server.

For multiplexed domains the multiplexor of the data set whose download is initiated
and the transfer_type are indicated to the server. The value of multiplexor must match the
mux_data_type attribute of dom_name. In case of an expedited download, the data of the data
set identified by multiplexor is indicated to the server.

Parameter Request / Indication Response / Confirm

Argument
 dom_name
 size
 basic_dom
 mux_dom
 multiplexor
 transfer_type
 normal
 expedited
 data

Remote Result
 success

Mandatory
 mandatory
 optional
 selection
 selection
 mandatory
 mandatory
 selection
 selection
 mandatory

Mandatory
 mandatory

The service is confirmed. The Remote Result parameter will indicate the success of the
request. In case of a failure, an abort domain transfer request must be executed. In case of a
successful expedited download of a multiplexed domain, this service concludes the download
of the data set identified by multiplexor.

February 1996
CMS Service Specification

- DS202-1 p. 17 -

Download Domain Segment

Through this service the client of dom_name supplies the data of the next segment to
the server of dom_name. The segment data and optionally its size are indicated to the server.
The continue parameter indicates the server whether there are still more segements to be
downloaded or that this was the last segment to be downloaded.

Parameter Request / Indication Response / Confirm

Argument
 dom_name
 data
 size
 continue
 more
 last

Remote Result
 success

Mandatory
 mandatory
 mandatory
 optional
 mandatory
 selection
 selection

Mandatory
 mandatory

The service is confirmed. The Remote Result parameter will indicate the success of the
request. In case of a failure, an abort domain transfer request must be executed. In case of
success, the server has accepted the segment data and is ready to accept the next segment.
There can be atmost one Download Domain Segment service outstanding for a Domain.

For basic domains a successful 'Initiate Domain Download' service must have been
executed prior to this service. For multiplexed domains a successful 'Initiate Domain
Download' service with transfer_type 'normal' must have been executed prior to this service.

Initiate Domain Upload

Through this service the client of dom_name requests the server of dom_name to
prepare for uploading data to the client. For multiplexed domains the multiplexor of the data
set whose upload is initiated is indicated to the server. The value of multiplexor must match the
mux_data_type attribute of dom_name.

The service is confirmed. The Remote Result parameter will indicate the success of the
request. In case of a failure, an abort domain transfer request must be executed. In case of
success, optionally the size of the data to be uploaded is confirmed. In case of successful
expedited upload of a multiplexed domain, this service concludes the upload of the data set
identified by multiplexor and the corresponding data is confirmed.

February 1996
CMS Service Specification

- DS202-1 p. 18 -

Parameter Request / Indication Response / Confirm

Argument
 dom_name
 basic_dom
 mux_dom
 multiplexor

Remote Result
 success
 size
 basic_dom
 mux_dom
 multiplexor
 transfer_type
 normal
 expedited
 data

Mandatory
 mandatory
 selection
 selection
 mandatory

Mandatory
 mandatory
 optional
 selection
 selection
 mandatory
 mandatory
 selection
 selection
 mandatory

Upload Domain Segment

Parameter Request / Indication Response / Confirm

Argument
 dom_name

Remote Result
 success
 data
 size
 continue
 more
 last

Mandatory
 mandatory

Mandatory
 mandatory
 mandatory
 optional
 mandatory
 selection
 selection

February 1996
CMS Service Specification

- DS202-1 p. 19 -

Through this service the client of dom_name requests the server of dom_name to
supply the data of the next segment. The continue parameter indicates the client whether there
are still more segements to be uploaded or that this was the last segment to be uploaded. There
can be atmost one Upload Domain Segment service outstanding for a Domain.

The service is confirmed. The Remote Result parameter will indicate the success of the
request. In case of a failure, an abort domain transfer request must be executed. In case of
success, the segment data and optionally its size are confirmed.

For basic domains a successful 'Initiate Domain Upload' service must have been
executed prior to this service. For multiplexed domains a successful 'Initiate Domain Upload'
service with transfer_type 'normal' must have been executed prior to this service.

Abort Domain Transfer

Parameter Request / Indication

Argument
 dom_name
 reason

Mandatory
 mandatory
 optional

This service aborts the up- or download of dom_name. Optionally the reason is
indicated. The service is unconfirmed. The service may be executed at any time by both the
client and the server of dom_name. If the client of dom_name has a confirmed service
outstanding, the Abort Indication is taken to be the Confirm of that service.

5.6 Used COB's

Client
COB-Type

Server
COB-Type

COB-Class COB-Length

tx
rx

rx
tx

1
4

8
8

February 1996
CMS Service Specification

- DS202-1 p. 20 -

6. EVENTS

6.1 Attributes

- name: see /4/
- user_type: one of the values {Client, Server}
- class: one of the values {Controlled, Uncontrolled, Stored}
- data_type: see /3/
- priority: a value in the range [0, 7]
- inhibit-time: n*100 usec, n >> 0

An event whose class is 'Controlled' is called a controlled event. An event whose class
is 'Uncontrolled' is called an uncontrolled event. An event whose class is 'Stored' is called a
stored event. The following attributes are only defined for controlled events:

- error_type: see /3/
- control_state: one of the values {Enabled, Disabled}

6.2 Usage

An event can be used to model asynchronous behaviour such as a temperature
exceeding a certain limit. The occurrence of an event is detected by the server and can be
notified to the client(s). An event has a data_type attribute to supply additional information
about what caused the event to occur such as the actual temperature that exceeded the limit.

Uncontrolled events can be used to implement events that are notified to any client that
is "interested". Uncontrolled events are always notified when they occur.

Controlled events can be used to implement an event that can be notified to at most one
client. The client can control whether the server notifies the event when it occurs.

Stored events can be used by a server to store locally a value of the data_type attribute
of an event and optionally notify the client(s). A client, on his own initiative, can read the last
value of an event that was stored by the server. Previously stored values are lost.

February 1996
CMS Service Specification

- DS202-1 p. 21 -

6.3 Local Services

Define Event

Parameter Request

Argument
 event_name
 data_type
 class
 controlled
 error_type
 uncontrolled
 stored
 user_type
 proiority
 inhibit-time

Mandatory
 mandatory
 mandatory
 mandatory
 selection
 optional
 selection
 selection
 mandatory
 optional
 optional

This service creates an event with the requested attributes. The control state of a
controlled event will be 'Disabled'. The attributes must not cause the data length of the used
COB's to overflow the maximum.

• NOTE: The cooperating applications are responsible for using consistent
attributes for the client and server of the event.

6.4 Remote Services

• Event Class = Controlled: There can be at most one client. There must be
exactly one server.

• Event Class = Uncontrolled: There can be zero or more clients. There can be at
most one server.

• Event Class = Stored: There can be zero or more clients. There must be exactly
one server.

Notify Event

Through this service the server of event_name notifies the client(s) of event_name that
the event has occurred and supplies its value. Event_name must be an uncontrolled event or a
controlled event with control_state 'Enabled'. Value must match the data_type attribute of
event_name. The service is unconfirmed.

February 1996
CMS Service Specification

- DS202-1 p. 22 -

Parameter Request / Indication

Argument
 event_name
 value

Mandatory
 mandatory
 mandatory

Store Event

Through this service the server of event_name stores the value of event_name.
Previously stored values for event_name are lost. Optionally the server immediately notifies
this value to the client(s) of event_name.

Parameter Request / Indication

Argument
 event_name
 value
 immediate_notify

Mandatory
 mandatory
 mandatory
 optional

Event_name must be a stored event. Value must match the data_type attribute of
event_name. The service is local unless immediate notification is requested. In that case the
service is unconfirmed.

Read Event

Through this service the client of event_name requests the server of event_name to
supply the value as stored by the last Store Event service. The service is confirmed. The
Remote Result parameter will confirm the value.

Parameter Request / Indication Response / Confirm

Argument
 event_name

Remote Result
 value

Mandatory
 mandatory

Mandatory
 mandatory

Event_name must be a stored event. Value must match the data_type attribute of
event_name.

February 1996
CMS Service Specification

- DS202-1 p. 23 -

Set Event Control State

Through this service the client of event_name requests the server of event_name to set
its control_state to the selected value. Event_name must be a controlled event. The service is
confirmed. The Remote Result parameter will indicate the success or failure of the request. In
case of a failure, optionally a value of the error_type attribute of event_name confirms the
reason.

Parameter Request / Indication Response / Confirm

Argument
 event_name
 control_state
 enabled
 disabled

Remote Result
 success
 failure
 reason

Mandatory
 mandatory
 mandatory
 selection
 selection

Mandatory
 selection
 selection
 optional

6.5 Used COB's

• Uncontrolled Events:

Client
COB-Type

Server
COB-Type

COB-Class COB-Length

rx tx 3 *

• Controlled Events:

Client
COB-Type

Server
COB-Type

COB-Class COB-Length

tx
rx

rx
tx

1
3

1
*

February 1996
CMS Service Specification

- DS202-1 p. 24 -

• Stored Events:

Client
COB-Type

Server
COB-Type

COB-Class COB-Length

RTR-rx RTR-tx 7 *

