
CAN in Automation (CiA)
International Users and Manufacturers Group e.V.

CAN Application Layer for Industrial Applications
CiA/DS202-3

February 1996

CMS Data Types and Encoding Rules

February 1996
CMS Data Types and Encoding Rules

- DS202-3 p. 2 -

1. Scope

This document contains the encoding rules that are used to transfer CMS data values
across the CAN Network and definitions application specifc extended data types. This
document is part of a set of documents that standardize the CAN Application Layer for
Industrial Applications.

2. References

/1/CiA/DS202-1, CMS Service Specification

/2/CiA/DS207, Application Layer Naming Conventions

/3/ANSI/IEEE Standard 754-1985 for Binary Floating-PointArithmetic.
Reprinted in: ACM SIGPLAN Notices 22(2), 9-25 (1987).

3. General Description

To be able to exchange meaningful data across the CAN network, the format of this
data and its meaning have to be known by the sender and receiver(s). CMS models this by the
concept of data types.

The CMS encoding rules define the representation of values of data types and the CAN
network transfer syntax for the repesentations. Values are represented as bit sequences. Bit
sequences are transferred in sequences of octetts (bytes). For numerical data types the CMS
encoding is little endian style.

Applications require data types beyond the basic data types. Using the compound data
type mechanism the list of available data types can be extended. Some general extended data
types are defined.

February 1996
CMS Data Types and Encoding Rules

- DS202-3 p. 3 -

4. Data Type Definitions

A data type determines a relation between values and encodings for data of that type.
Data types are assigned names in their type definitions. The syntax of data and data type
definitions is as follows.

<data definition> ::=<type name> <data name>
<type definition> ::=<constructor> <type name>
<constructor> ::=<compound constructor> |

<basic constructor>
<compound constructor> ::=<array constructor>|

<structure contructor>
<array constructor> ::=ARRAY [<array length>] OF <type name>
<structure constructor> ::=STRUCT OF <component list>
<component list> ::=<component> |

<component>, <component list>
<component> ::=<type name> <component name>
<basic constructor> ::=BOOLEAN |

VOID<bit size> |
INTEGER<bit size> |
UNSIGNED<bit size> |
REAL32 |
NIL

<array length> ::=positive integer
<bit size> ::=1|2|...|64
<type name> ::=symbolic name (see /2/)
<component name> ::=symbolic name (see /2/)
<data name> ::=symbolic name (see /2/)

Recursive definitions are not allowed.

The data type defined by <type definition> is called basic (resp.~compound) when the
constructor is <basic constructor>(resp. <compound constructor>).

February 1996
CMS Data Types and Encoding Rules

- DS202-3 p. 4 -

5. Bit Sequences

5.1 Definitions

A bit can take the values 0 or 1. Let b0,..., bn-1 be bits, n a non-negative integer. Then
b = b0 b1 ... bn-1

is called a bit sequence of length |b| = n. The empty bit sequence of length 0 is denoted ε.
Examples: 10110100, 1, 101, etc. are bit sequences.
The inversion operator (¬) on bit sequences assigns to a bit sequence

b = b0 b1 ... bn-1

the bit sequence
¬b = ¬b0 ¬b1... ¬bn-1

Here ¬0 =1 and ¬1 = 0 on bits.
The basic operation on bit sequences is concatenation.

Let a = a0...am-1 and b = b0 ... bn-1 be bit sequences. Then the concatenation of a and b,
denoted ab, is

ab = a0 ... am-1 b0 ... bn-1

Example: (10)(111) = 10111 is the concatenation of 10 and 111.
The following holds for arbitrary bit sequences a and b:

|ab| = |a| + |b|
and

εa = aε = a

5.2 Transfer Syntax

For transmission across a CAN network a bit sequence is reordered into a sequence of
octetts. Here and in the following hexadecimal notation is used for octetts. Let b=b0...bn-1 be
a bit sequence with n<64. Denote l a non-negative integer such that 8(l-1)<n<8l. Then b is
transferred in l octetts assembled as shown in Figure 1. The bits bi, i >n of the highest
numbered octett are don't care bits.
Octett 1 is transmitted first and octett l is transmitted last. Hence the bit sequence is transferred
as follows across the CAN network:

b7, b6,...,b0,b15,...,b8,...

February 1996
CMS Data Types and Encoding Rules

- DS202-3 p. 5 -

7 6 ... 0

 1
 2

 l

b7 b6 ... b0
b15 b14 ... b8

b8l-1 b8l-2 ... b8l-8

Figure 1: Transfer Syntax for Bit Sequences

Example: The bit sequence 0011 1000 01 is transferred in two octetts:
First 1ch and then 02h.

February 1996
CMS Data Types and Encoding Rules

- DS202-3 p. 6 -

6. Basic Data Types

For basic data types <type name> equals the literal string of the associated constructor,
e.g.,

BOOLEAN BOOLEAN

is the type definition for the Boolean data type.

6.1 NIL

Data of basic data type NIL is represented by ε.

6.2 Boolean

Data of basic data type BOOLEAN attains the values TRUE or FALSE. The values are
represented as bit sequences of length 1. The value TRUE (resp. FALSE) is represented by the
bit sequence 1 (resp.0).

6.3 Void

Data of basic data type VOIDn is represented as bit sequences of length n. The value of
data of type VOIDn is undefined. The bits in the a sequence of data of type VOIDn must either
be specified explicitly or else marked "don't care".

Data of type VOIDn is useful for reserved fields and for aligning components of
compound values on octett boundaries.

6.4 Unsigned Integer

Data of basic data type UNSIGNEDn has values in the non-negative integers. The
value range is 0, ..., 2n-1. The data is represented as bit sequences of length n. The bit
sequence

b = b0 ...bn-1

is assigned the value

UNSIGNEDn(b) = bn-1(2n-1)+ ...+ b1 21 + b0 20

Note that the bit sequence starts on the left with the least significant bit.
Example: The value 266 with data type UNSIGNED16 is transferred in two octetts

across the bus, first 0a h and then 01h.

February 1996
CMS Data Types and Encoding Rules

- DS202-3 p. 7 -

6.5 Signed Integer

Data of basic data type INTEGERn has values in the integers. The value range is
-2n-1, ..., 2n-1-1. The data is represented as bit sequences of length n. The bit sequence
b = b0 .. bn-1 is assigned the value

INTEGERn(b) = bn-2 2n-2 + ...+ b1 21 + b0 20 if bn-1 = 0

and, performing two's complement arithmetic,

INTEGERn(b) = INTEGERn(^b) - 1 if bn-1 = 1

Note that the bit sequence starts on the left with the least significant bit.
Example: The value -266 with data type INTEGER16 is transferred in two octetts

across the bus, first f6h and then feh.

6.6 Floating Point Number

Data of basic data type REAL32 has values in the real numbers.
The data is represented as bit sequences of length 32. The encoding of values follows the IEEE
754-1985 Standard for floating point numbers, see the reprint /3/.

A bit sequence of length 32 either has a value (finite non-zero real number, +0, + _) or
is NaN (not-a-number). The bit sequence b = b0 … b31 is assigned the value (finite non-zero
number)

REAL32(b) = (-1)S 2E - 127 (1 + F)

Here S=b31 is the sign. E = b30 27 + …+ b23 20, 0 < E < 255, is the un-biased exponent.
F = 2-23 (b22 222 + …+ b1 21 + b0 20) is the fractional part of the number. E =0 is used to
represent + 0. E =255 is used to represent infinities and NaN's. Note that the bit sequence
starts on the left with the least significant bit.

Example: 6.25 = 2E -127 (1 + F) with E =129 =27 +20 and F = 2-1 +2-4 =
2 -23(222+219). Hence the number is represented as:

6.25: 0000 0000 0000 0000 0001 0011 0000 0010

Figure 2 shows example encodings for REAL32 as sequences of four octetts for
transfer across the CAN network.

February 1996
CMS Data Types and Encoding Rules

- DS202-3 p. 8 -

7. Compound Data Types

Type definitions of compound data types expand to a unique list of type definitions
involving only basic data types. Correspondingly, data of compound type ´type_name´ are
ordered lists of component data named component_i of basic type ´basic_type_i´.
Compound data types constructors are ARRAY and STRUCT OF.

STRUCT OF
<basic_type_1> <component_1>,
<basic_type_2> <component_2>,
… …
<basic_type_N> <component_N>

<type_name>

ARRAY [<length>] OF <basic_type> <type_name>

The bit sequence representing data of compound type is obtained by concatenating the
bit sequences representing the component data. Assume that the components ´component_i´
are represented by bit sequences bi, for i =1,…,N Then the compound data is represented by
the concatenated sequence b1 … bN.

Example: Consider the data type

STRUCT OF
INTEGER10 i,
UNSIGNED5 u

NewData

Assume i = - 423 and u =30. Let b(i) and b(u) denote the bit sequences representing
the values of i and u , respectively. Then:

b(i) = 1001101001
b(u) = 01111
b(iu) = b(i) b(u) = 1001101001 01111

The value of the structure is transferred with two octetts, first 59h and then 79h.

February 1996
CMS Data Types and Encoding Rules

- DS202-3 p. 9 -

8. Extended Data Types

The extended data types consist of the basic data types and the compound data types
defined in the following subsections.

8.1 Octett String

The data type OctettString<length> is defined below. length is the length of the octett string.

ARRAY [<length>] OF UNSIGNED8 OctettString<length>

8.2 Visible String

The data type VisibleString<length> is defined below. The admissable values of data
of type VisibleChar are 0h and the range from 20h to 7Eh. The data are interpreted as ASCII
characters. length is the length of the visible string.

UNSIGNED8 VisibleChar
ARRAY[<length>] OF VisibleChar VisibleString<length>

8.3 Date

The data type Date is defined below. It follows from the definition and the encoding rules that
data of type Date is represented as bit sequences of length 56.

STRUCT OF
UNSIGNED16 ms,
UNSIGNED6 min,
VOID2 reserved_1,
UNSIGNED5 hour,
VOID2 reserved_2,
BOOLEAN su,
UNSIGNED5 day_of_month,
UNSIGNED3 day_of_week,
UNSIGNED6 month,
VOID2 reserved_3,
UNSIGNED7 year,
VOID1 reserved_4

Date

February 1996
CMS Data Types and Encoding Rules

- DS202-3 p. 10 -

Figure 1 contains descriptions and value ranges for the components of data of type
Date. The components reserved_i, i =1,...,4, are reserved with all bits equal 0.

Component Description Value Range

ms milliseconds 0,...,59999
min minutes 0,...,59
hour hour 0,...,23
su standard or summer time 0 = standard, 1 = summer
day_of_month day of month 1,...,31
day_of_week day of week 1 = monday, 7 = sunday
month month 1,...,12
year year modulo centuries 0,...,99

Figure 1:Descriptions for Date

8.4 Time of Day

The data type TimeOfDay represents absolute time. It follows from the definition and
the encoding rules that TimeOfDay is represented as bit sequences of length 48.

Component ms is the time in milliseconds after midnight. Component days is the
number of days since January 1, 1984.

STRUCT OF
UNSIGNED28 ms,
VOID4 reserved_1,
UNSIGNED16 days

TimeOfDay

8.5 Time Difference

The data type TimeDifference represents a time difference. It follows from the
definition and the encoding rules that TimeDifference is represented as bit sequences of length
48.

Time differences are sums of numbers of days and milliseconds. Component ms is the
number milliseconds. Component days is the number of days.

STRUCT OF
UNSIGNED28 ms,
VOID4 reserved_1,
UNSIGNED16 days

TimeDifference

